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The behaviour of dilute polymer solutions in sink flow, viz., radial flow toward a point, 
was investigated experimentally and theoretically. Solutions of polyethylene oxide, 
in the drag-reducing concentration range, were pushed through a 60" conical channel 
a t  Reynolds numbers of order 102. Preliminary studies revealed a range of flow condi- 
tions in which the flow was free of secondary motion yet non-Newtonian effects were 
significant. Measurements of pressure differential between two radial positions yielded 
the non-Newtonian normal stress developed in the radial direction; the magnitude was 
the same order as the Newtonian stress, i.e., as the dynamic pressure $pV2 .  

Several fluid models were analysed to determine the stress generated by each in sink 
flow. It was found that a solution of Rouse-Zimm flexible macromolecules produces a 
stress which is three orders of magnitude below the observed level, and that macro- 
molecules with finite extension fall short by two orders. A suspension of elongated 
particles, of the type analysed by Batchelor, was also considered, but application to 
the present case was difficult because of the small scale required by the theory. Conse- 
quently, the theory was extended to  include particles the size of the flow field, and an 
order-of-magnitude analysis revealed that for such particles to produce the desired 
stress, the aspect ratio must be 0(10k), and the cross dimension is likely O(O-l)pm. 
Electron micrographs of freeze-dried samples of the polymer solutions showed the 
solute in the form of an irregular network of apparently undissolved strands, with 
diameters in the O(O.l)pm range. 

1. Introduction 

Dilute polymer solutions are capable of exhibiting large non-Newtonian effects in 
a variety of flows. Probably the best known example is the reduction of wall shear 
stress by the addition of a few parts per million of a high molecular weight polymer. 
The additive alters the structure of the flow primarily in the viscous sublayer and buffer 
regions. There the molecules are believed to reduce unsteady elongational motions, 
thereby decreasing the transfer of momentum. Another situation in which large non- 
Newtonian effects are found is flow through a porous medium; comparably small 
amounts of polymer can increase the pressure gradient by a factor of order 10 (James & 
IlcLaren 1975). In this flow, a fluid particle is repeatedly stretched as it follows a 
tortuous path, and the increased hydraulic resistance is thought to  be related to the 
fact that  these fluids develop large normal stresses in extensional flow. The key fluid 
property, then, is extensional viscosity, or the ratio of this viscosity to the shear 
viscosity. The magnitude of this ratio has been determined by Metzner & Metzner 
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(1970). Their work on dilute solutions of a polyacrylamide yielded values from 0(102) 
to  O( lo4) for this ratio, which is 3 for Newtonian fluids. Their measurements of exten- 
sional viscosity were found from flows through small orifices, in which the tensile stress 
was deduced from the measurement of jet thrust at the orifice exit. 

The magnitudes reported by Metzner & Metzner depend significantly on the 
assumed form of the flow field upstream and downstream of the orifice, and the necessity 
of this assumption is typical of the problems encountered in making proper rheological 
measurements in extensional flow. I n  the first place, it is hard to  devise experiments in 
which both the velocity field and the stress field are well defined. Also, as Ting & 
Hunston (1977) have noted, non-Newtonian behaviour is generated only when the 
deformation rate is sufficiently high and when the transit time a t  that  rate is sufficiently 
long; in convective flow, these are conflicting requirements. Furthermore, high strain 
rates for dilute solutions can mean high Reynolds numbers, in which inertial effects 
may overwhelm non-Newtonian effects, or even lead to  turbulence. These problems 
with inertia are generally avoided or diminished by having a small-scale geometry, of 
order 0-1-1 mm, which was the case in the Metzners’ experiments, and which will be 
the case for the extensional flow experiments to  be described in this paper. 

The rheological study reported herein was an outgrowth from past experiments on 
laminar flows of dilute polymer solutions. For some years we have attempted to under- 
stand the mechanics of these fluids by conducting experiments in which large non- 
Newtonian effects were generated in well-defined laminar flows. One of these experi- 
ments was mentioned earlier - the flow through a porous medium. I n  that investigation, 
the media were packed beds of small uniform beads, and the fluids were O( 10) p.p.m. 
solutions of polyethylene oxide (Union Carbide’s Polyox) in water, These conditions 
produce the abnormally high pressure drops mentioned in the first paragraph, and 
the basic question that arose from that and similar work was: how does such a small 
amount of solute produce such a large stress? Experiments by the Metzners and 
by Balakrishnan & Gordon (1975) have yielded the magnitude of the stress, but the 
source of the nowNewtonian effect is not discussed. 

This work started off to examine flow through porous media, mainly to explain the 
high pressure gradients and, i t  was hoped, to identify the underlying physical 
mechanism. Our first investigation was flow through a similar but simpler geometry, 
an orifice. Orifice flows are known to produce effects comparable to flows in porous 
media (e.g. Balakrishnan & Gordon 1975), although there is the difficulty that non- 
Newtonian behaviour in orifice flows is always accompanied by a large upstream 
vortex ring, while no secondary motion has been observed in a porous medium (James 
& McLaren 1975). Thinking that geometry was a factor, we initially studied flows 
through orifices of various shapes. This study revealed the general features of dilute 
solution flow in converging channels, and led to the design of a rheometer having a well- 
defined extensional flow field. Data from the rheometer prompted the analysis of 
various fluid models in extensional flow, from solutions of flexible macromolecules to 
suspensions of elongated particles. 

2. Initial studies 
Past work by several groups on the flow of polymer solutions through sudden con- 

tractions indicatles that  the onset of non-Newtonian behaviour is accompanied by the 
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FIGURE 1. The various orifices tested in the preliminary study, shown to scale. 

appearance of an upstream vortex ring. We first wondered if the sharp edge of the 
orifice promoted this secondary motion, remembering that no secondary motion was 
observed in a porous medium where the surfaces are well rounded. Consequently we 
tested a series of orifices of various shapes, all having a diameter a t  the minimum cross- 
section of about 0.1 mm. The shapes, shown in figure 1, were created by electrical 
discharge machining in plates of appropriate thickness. Each orifice plate was 
installed in a test chamber and fluid was driven through the orifice by a specially- 
designed roller pump, while the pressure drop across the orifice plate was monitored. 
The apparatus for the experiment is sketched in figure 2. By suspending micron-size 
mica flakes in the test fluids we were able to see, with the aid of a microscope, the gross 
features of the flow pattern within each channel as the flow measurements were 
taken. Water and dilute Polyox solutions, ranging from 10 to 100p.p.m., were pushed 
through each orifice and, despite the variety in shape, the results for all orifices were 
remarkably similar. An example is presented in figure 3, for the 60" conical channel. 
At low flow rates, the pressure drop was the same as for water, and the observed 
streamline pattern was simple converging flow, as shown in inset (i). As the flow rate 
increased, the head suddenly jumped to several times the Newtonian value and 
secondary motion simultaneously appeared in the channel, of the form shown in 
inset (ii). This motion was a vortex ring which was usually highly asymmetric, highly 
unsteady and of large scale, extending well into the upstream reservoir. This irregular 
flow pattern and the increased pressure differential persisted as the flow rate continued 
to  increase. While this behaviour was observed for all orifices, a different result was 
noted for very dilute solutions in a conical channel. Representative of this pattern are 
the 40p.p.m. data in figure 3. The departure from water data occurred a t  about the 
same flow rate, but the deviation was gradual and the flow stayed in the pattern of 
inset (i}. The head eventually increased to  about twice the water value, the flow 
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FIGURE 2. A schematic diagram of the apparatus for the orifice flow 
study and later for the sink flow measurements. 

remaining free of secondary motion. Only a t  the highest flow rates did secondary 
motion appear, and then only by deliberately disturbing the flow. 

These last data not only indicate a significant non-Newtonian effect but also suggest 
a method for measuring normal stresses. The Reynolds number of the flow, based on 
exit conditions, ranges from 30 a t  onset to a maximum of 300. At the upper end, the 
Newtonian and non-Newtonian contributions to the pressure differential are about 
equal, and so by some mechanism the solute produces a force competitive with inertia 
forces at a Reynolds number of 300. This is a very large force, especially when it is 
realized that the mechanism must, in the end, be dissipative in nature and hence this 
viscous effect due to the additive is 0(103) times that due to the solvent. The high 
Reynolds number also means that the core of the flow is free of shear, and consequently 
is virtually a sink flow. The boundary layer which forms along the channel wall has a 
thickness, relative to a cross dimension, of order R e d ,  which is O( 10-l) in the present 
case. Outside the boundary layer, the radial velocity is Q/2nrr2( 1 - cos e ) ,  where Q is 
the flow rate, r the radius from the apex, and 19 the half-angle of the cone. With the 
deformation field well defined for the core of the flow, this channel is potentially useful 
for rheological work. However, the flow field downstream of the exit is uncertain even 
for Newtonian fluids, and so the reservoir-to-reservoir pressure differential does not 
correspond to a known velocity field. It would be preferable, of course, to measure the 
pressure just before the exit where sink flow still exists, and so a new channel was 
designed to  meet this requirement. 
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FIGURE 3. Measurements of head versus discharge for flow of water and dilute Polyox solutions 
through a 60" conical channel. For water (-+-) and the 40 p.p.m. solution, (- -0- -), the 
flow pattern was simple converging flow as shown in inset (i). For the 80 p.p.m. solution (- .-O-.-) 
the flow changed to the pattern shown in inset (ii) when the head increased rapidly. Data for the 
other 7 orifices in figure 1 were quite similar to the above results. 

3. Measurement of pressure gradient in sink flow 
Since the initial studies showed that a considerable non-Newtonian effect can be 

generated in a conical channel, a proper rheological experiment was designed on the 
basis of these findings. It was recognized that the flow Reynolds number must be 
O( lo2) - high enough to create a virtual sink flow, but not be so high that viscosity- 
generated non-Newtonian effects are dominated by inertial forces and therefore hard 
to  detect. A second requirement of the flow field is that the deformation rate be 
sufficiently high to generate departures from Newtonian behaviour. In  sink flow, the 
strain rate is 2u/r where u is the radial velocity, and the data in figure 3 show that this 
parameter is O( lo3) s-l at onset. (This order of magnitude has been found for other 
laminar flows of dilute polymer solutions and is often related to the largest relaxation 
time of the macromolecules.) The requirement that the deformation rate u / r  be 
greater than O( 103) s-l, and that the Reynolds number u r / v  be O( lo2), means that the 
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FICXJRE  4. The exit region of the 60” conical channel used in the sink flow measurements. The
pressure differential was  measured  between the O-02  mm port and the upstream reservoir
adjoining the channel, 2.5  mm from the apex.

exit radius must be less than O[v/lO]a. Since v is 0.01  ems/s-l for our aqueous solutions,
the exit radius must be less than about 0.3mm.  Consequently, a conical channel for
sink flow studies has dimensions comparable to the channels in the initial studies.

Such a small exit radius makes it hard to locate a pressure port near the exit. As
mentioned in the previous section, it is desirable to measure the pressure differential
over a stretch where the flow is well approximated by sink flow. One port is naturally
upstream; since the velocity goes as rs2, the pressure decreases aa r4, and thus it is
only a short distance to a region that is effectively ‘far upstream ‘. The other port must
be located as close to, but upstream of, the exit, for the deformation rate is largest there,
and the streamlines are still rays. If the port were further upstream, a faster flow rate
would generate a deformation rate comparable to that at the exit, but this flow would
create high enough normal stresses at the exit that secondary flow would likely be
induced. Since the smallest port we could create was a slit of 0.021nm width, the
location was a compromise: it was close to the exit where the deformation rates are
large and it was far enough upstream that the pressure variation over its width was
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FIGURE 5 .  Head versus discharge for water flow in the conical channel of figure 4. The theoretical 
curve (--) is given by equation (1) in the text; 0, experimental. 

small. The geometry of the channel in the exit region is shown in figure 4; the full 
channel size, as measured from the apex to the upstream reservoir, is 2.5 mm. 

The channel was installed in the test apparatus of figure 2 .  As fluids were pumped 
through the channel a t  known flow rates, the pressure differential between the port and 
the upstream reservoir was measured. The first measurements were for water and, for 
this Newtonian fluid, the relation between flow rate Q and head h can be estimated 
using the known similarity solution for axisymmetric flow. From the analysis in 
Rosenhead (1963), page 427, and using the numerical data from table V. 4 of the same 
reference, the h-& relation is found to be 

Q = 2nr2(2gh)t(l-cosO) 1-0.415 - - [ ( r (gh) t )* l  !zo:O]* 
This equation has the form 

1 constant 
&actual = &inviscid [ 1 - Re4 ' 

showing that viscous effects diminish in the usual fashion as Red. This relation is the 
solid line in figure 5 ,  and the points are our water data. There is a constant discrepancy 
of about 20 yo between the two, and the most likely source of error is in the value 
substituted for r .  I n  fact, r was estimated from the 0.22 mm cross-dimension shown in 
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FIGURE 6. Head versus discharge for a 20 p.p.m. solution of polyethylene oxide in the conical 
channel (0). The dashed line represents the experimental data for water from figure 5. 

figure 4, and this distance was difficult to measure to better than 10 yo accuracy. In  any 
case, the absolute values of the water data are not crucial, since their main purpose is 
to serve as a base line against which to compare the non-Newtonian data. A 20p.p.m. 
solution of Polyox FRA was tested in the channel and the data are presented in figure 6. 
Onset occurs at  about 0.01 cm3 s-l, a value which corresponds to a strain rate (at exit) 
close to the exit strain rate in figure 3. Unlike figure 3, however, the solution data in 
figure 6 fall below the water line. This result initially baffled us, for it was hard to con- 
ceive how any non-Newtonian mechanism could reduce the pressure below the value 
due to inertia alone. This situation was cleared up when we examined the relation 
between pressure and stresses for an anisotropic fluid. 

4. The stress field 
When a Newtonian fluid contains dissolved or suspended material, an additional 

stress (rii may be generated. In  this case, the constitutive equation for the medium 
may be expressed as: 

(r. 21 = -p&6i,+2,ueii+a~i. 
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When the additional stress is in the radial direction and designated vk, then the three 
normal stresses in spherical coordinates become 

du 
dr a,, = -p+  2p- -k +:,, 

U 
u*o = -p+2p--+v;, 

r 

which satisfies the requirement that the bulk pressure is the negative of the mean 
normal stress. Hence the pressure measured by the port in the conical channel is larger 
than the Newtonian value by Qv;. This means that the pressure difference between the 
port and far upstream is lower for non-Newtonian fluids, and thus explains why the 
data for the polymer solution fall below the water data in figure 6. 

The non-Newtonian data from the channel flow indicate that is significant, and 
in the next section a number of fluid models are examined to find out under what 
conditions each could produce the observed magnitude of this stress. 

5. Models for non-Newtonian fluids and their behaviour in sink flow 
Dilute solutions may be represented by a variety of fluid models, and in this section 

we investigate several candidates which are capable of producing the non-Newtonian 
behaviour found in the experimental work. Since the results from the conical channel 
are essentially qualitative in nature, this analyhical investigation will be of a similar 
nature, with many estimates made only to an order of magnitude. 

(i) Rouse-Zimm theory 

We first consider the classical Rouse-Zimm model for a dilute solution of flexible 
macromolecules. I n  this model, the polymer chain is represented by a series of beads 
and springs, and its dynamical behaviour has been found for a variety of flows. 
Recently, King (1977) solved the deformation of the bead-spring model in sink flow 
and found that the stress due to the molecules is 

where c is the solute concentration, [r] is the intrinsic viscosity, and 71 is the largest 
Rouse relaxation time. The corresponding Newtonian stress a t  high Reynolds numbers 
is the dynamic pressure ipu2 and thus the ratio of non-Newtonian to Newtonian 
stresses, denoted n N / N ,  is 

where I? has been substituted for the strain rate. 71 is O( 10-3) s for high weight Polyox 
and I?, calculated a t  the pressure port, is about 2 x 104s-l a t  the highest flow rate; 
hence the maximum dimensionless strain rate r T 1  is about 20. Also, from the experi- 
ment, [y] is 2500cm3g-l, c is 20x 10-6gcm-3, and Re is about 300 at the port. 
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Consequently n N / N  is O(lO-3), which is three orders below what was observed. A 
solution of Rouse-Zimm macromolecules, therefore, is not capable of generating the 
stresses measured in the channel. 

(ii) Molecules with finite extension 
King also found the stress field when the macromolecules have limited extension 
(private communication, 1977). He assumed that polymer chains deform initially as 
Rouse-Zimm macromolecules, but when the deformation reaches a prescribed value, 
the molecules are ‘frozen’ and remain in that configuration as they continue in sink 
flow. The molecules could be immobilized by entanglements or by crystallization, but 
this model was not intended to be associated with a particular physical mechanism; 
rather, it was intended to be a simple yet useful means of assessing the significance of 
finite extension. Since inextensible particles dissipate more energy than flexible ones, 
their effect on the flow is expected to be larger. King showed that the addition stress 
due to frozen extended macromolecules is 

where Z is the length of the molecule in extension and 1, is its original length. Deforma- 
tion begins when the strain rate exceeds 7t1, and is assumed to occur upstream a t  rl. 
The maximum effect is realized when the molecule locks just as it reaches the pressure 
port, a t  r2. The maximum possible extension between rl and r2  is that of a material line 
element, and its length increases by (r l /r2)2.  Hence (Z /Zo)2  for the molecules is ( r l / r2 )4  a t  
most. This ratio can also be expressed using r, the strain rate at the port. Since strain 
rate varies as r-3, then n N / N  for this case is 

This ratio is 20 times higher than the preceding case, and thus the non-Newtonian 
forces are still two orders too small. Other models of finite extension are available, but 
none will produce any stronger effects. Therefore we rule out the possibility that the 
observed stresses can be due to randomly-coiled molecules with finite extension. 

(iii) Small-scale long fibres 

Since macromolecules of any deformability cannot generate stresses to the levels 
measured in the experiment, it is necessary to consider a different type of model for the 
fluid. A logical candidate, after a solution of molecules, might be a suspension of 
particles. It is well known that particles which are round or nearly so generate an 
increase in viscosity which is the same order as the volume concentration. A very much 
larger effect is sought here, of the type possible with long particles. Recently, Batchelor 
(1971) found the stress developed by a suspension of elongated particles in pure 
straining motion. Brownian motion was neglected and the particles were aligned in a 
parallel but random array in the straining field. Batchelor showed that a considerable 
non-Newtonian effect is possible in a dilute concentration when the rod aspect ratio is 
large, and when the separation distance between rods is much larger than the rod 
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thickness but much smaller than the rod length. Specifically i t  was predicted that the 
additional stress in the straining direction is 

where # is the volume concentration, 1 the particle half-length, b the effective radius, 
and ell the strain rate in the principal direction, viz., eZ2 = e33 = -+ell. When the 
flow is sink flow instead of pure straining, it is readily shown that the analogous 
stress is 

and then 
n N  

The specific gravity of polyethylene oxide is close to 1 ,  and assuming the density is the 
same down to the molecular level, q5 is the same order as c ,  namely O( Without an 
apriori  value for lib, we can instead work backwards from the known value for n N / N ;  
that  is, since n N / N  is O( l ) ,  the required aspect ratio l /b  is O( 104). The theory cannot 
yield any further information about the size of the particles, but a fundamental 
assumption in the theory limits the long dimension. The assumption is that the particle 
length is small compared to the dimensions of the flow field. For the conical channel, 
the characteristic length is the exit diameter 0.14 mm. Accordingly, 1 < O(O.1) mm and 
thus b < O(lOe)A, which means that the cross dimension b must be O( l0)  A or less. 
This is the same order as the diameter of the molecular chain. From our previous 
discussion of molecular extension, i t  is difficult to conceive how a molecular chain or 
a group of chains, originally randomly-coiled far upstream, could be stretched out to 
the extent that the effective aspect ratio is O( 104) a t  the channel throat. 

(iv) Large-scale long jibres 

Although the Batchelor theory is limited to particles of molecular dimensions, it does 
suggest that  elongated particles - perhaps with much larger dimensions - could account 
for the non-Newtonian effects. Consequently, a revised theory was developed for 
‘large-scale ’ particles in sink flow, particles whose length may be comparable to the 
size of the flow field. This theory, which has been set aside in the appendix, shows that 
the stress for large-scale particles is 

= log (n/q5) ( “ ) ‘ g ( ; ) l c $  b 

which is similar to the relation governing small-scale particles except for the function 
g(r/Z). The exact form of g is given in the appendix, but since it is O( l ) ,  then the order- 
of-magnitude arguments for l / b  are the same as the previous case. Therefore the 
required aspect ratio E/b is still O(l0z) and, again, additional information is needed 
for estimates of 1 and b. First, i t  should be noted that our solutions are optically clear, 
and so the cross dimension of a suspended particle (assuming particles are in fact 
present) cannot be larger than about 1 pm. As for length, perhaps a realistic estimate is 
the size of the flow field; if the length were smaller, the small-scale theory would apply 
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and, if larger, then there should be some macroscopic evidence. Consequently, 1 is 
most likely of order 0-1 mm and the corresponding cross-dimension b would then be 
O(O.lpm) or less. 

This order-of-magnitude analysis shows that the most suitable model for our non- 
Newtonian fluid is a suspension of elongated particles, probably of the size of the flow 
field. If the solute actually has the form of particles or any equivalent configuration, 
such sizes should be detectable by standard instruments and techniques. Accordingly, 
we turned to an electron microscope to provide some clue as to the structure of the 
solute. 

6. Electron microscopy of freeze-dried samples 
We originally thought that molecular strands might be formed by the strong exten- 

sional motion in the converging channel, similar to what happens in shear-induced 
crystallization for more concentrated solutions (e.g. Pennings, van der Mark & Kiel 
1970). Since such strands would remain intact for some time after leaving the elonga- 
tional flow field, our idea was to capture this formation by quickly freezing a liquid 
sample. A small drop of the solution was allowed to fall into a pool of liquid nitrogen 
( -  196 "C) .  The frozen sphere was removed to a vacuum chamber, the water was sub- 
limated, and the deposit left on the container was examined in a scanning electron 
microscope. 

Shown in figures 7 (a, b )  (plate 1 )  are electron micrographs of the 20p.p.m. Polyox 
solution from the sink flow experiments. Little difference was found between samples 
from the upstream and downstream reservoirs, and the sample in figure 7 is from the 
upstream chamber. Figure 7 (a)  shows that the polymer residue has a mesh-like form, 
with strands of various lengths and diameters. At the larger magnification in figure 7 ( b )  
the smallest diameter is about 0.1 pm, which was the cross-dimension estimated in the 
previous section for large-scale particles. Samples of other drag-reducing polymers 
were prepared in the same way and they too formed highly irregular networks; as an 
example, figure 7 (c) displays the formation from a 50 p.p.m. solution of polyacrylamide 
from Stockhausen. These photographs confirm the earlier pictures of fibrous structure 
by Ouibrahim (1978), a t  magnifications up to 230 times. Our use of the electron micro- 
scope permits a more accurate characterization of the structure, particularly to esti- 
mate the diameter of the smallest strands. 

At first glance, there appear to be too many strands for a solution in which the weight 
fraction of the solute is only 20 parts per million. It must be remembered, however, that  
whatever the form of the solute, it collapses to a more compact form when the water is 
withdrawn. As a check, we estimated the total volume of strands from a series of 
micrographs covering the area of the residue. This was found to be comparable to the 
solute volume known from the concentration and drop size. 

The micrographs suggest that the polymer does not dissolve to discrete molecules 
but remains in undissolved strands. It is not clear how the strands develop but it is 
doubtful that they are the product of the freeze-dry preparation. The time of freezing 
is estimated to be around 0.1 s, a factor of lo2 higher than the relaxation time of the 
molecule. It is unlikely that a randomly-coiled chain in a stationary solvent would 
extend itself so much and so quickly, simply due to a drop in temperature. Nor is the 
drying technique likely to produce the strands. When the water molecules sublimate, 
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polymer segments will tend to bind to one another: a random coil will collapse to a 
sphere and fibre-like material will tend to ball up or link to  form a three-dimensional 
mesh. The coalescence will certainly not produce strands or links from what were 
originally coils. The coalescence, however, may account for the fact that no ends were 
found for the strands in the micrographs. In  fact, for the moment, there is no way of 
knowing if the observed network came from the solution or was formed during 
sublimation. 

The existence of strands is wholly contrary to the accepted concept of discrete 
macromolecules in dilute solution. Since light-scattering has shown that high molecular 
weight polymers, including Polyox (Shin 1965), have a random-coil configuration in 
dilute solution, it is difficult to explain how strands could be present. Part of the answer 
lies with the fact that solutions prepared for light scattering are thoroughly mixed and 
then filtered. These steps will break up any network which may be present and will 
promote the dissolution of strands. Following a common practice, our method of pre- 
paring a solution for experiment is to first make a master solution and then prepare a 
dilute solution from it. Stirring of both solutions is always gentle so as to avoid 
‘degradation ), and the dilute solution is generally used within days after preparation. 
This method of preparation appears to produce the strands, for when we intentionally 
degraded a solution by intense shearing, it no longer produced non-Newtonian effects, 
and its micrograph showed clumps and not fibres. 

The concept of strands in solution has been suggested by other workers in addition to 
Ouibrahim. Sternberg, Lagerstedt & Lindgren (1977) found polymer strings when a 
concentrated solution was mixed with additional solvent, and went on to speculate that 
the polymer forms thin strands in the final stages of dissolution. Hinch & Elata (1979) 
proposed that stringy networks are formed when ‘fresh’ dilute solutions are prepared 
from concentrated master solutions. With such a model, they explain various non- 
Newtonian effects in laminar and turbulent flows and, in fact, cite the present work as 
supporting evidence. 

7. Discussion of results 
This work shows that a dilute solution of a high molecular weight polymer can behave 

hydrodynamically as a suspension of long fibres, and that the fibres may be slowly- 
dissolving microscopic strands of the solute. A number of points require clarification 
if the fluid is to be treated as a suspension. One concerns strand length. The suspension 
theory in 9 5 showed that the particle aspect ratio must be O( 10%) to account for the 
non-Newtonian effects, but the strands observed in the micrographs - that is, the 
components of the mesh - have ratios nowhere close to this magnitude. The mesh is 
thought to be formed during the preparation of the solution and is envisaged to be 
continuous throughout the solvent. As such, it has no inherent length scale, but an 
effective length can be created by a flow field. When the fluid is stagnant, as in the 
upstream reservoir, the mesh fibres are thought to be.randomly oriented. Once the 
solution is flowing, viscous drag alters the configuration of the network, and a t  
sufficiently high flow rates Brownian motion forces are negligible and the strands are 
aligned primarily in the flow direction. Under these conditions, the mesh produces 
effects similar to a suspension of aligned long fibres and so a suspension model for the 
solution is quite appropriate. The critical strain rate for alignment is evident from the 
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data in figure 6 and turns out to be close to  that for discrete flexible molecules (we can 
find no explanation for this similarity and believe it to be coincidental). At higher flow 
rates, critical straining occurs upstream of the exit and the effective length of the mesh 
is then the distance from this point to the exit. The maximum flow rate is about 
10 times that a t  onset, and since the strain rate varies as critical straining occurs 
a t  a radius about twice (viz. 10s) the exit radius. Hence the effective length for the 
mesh is the order of the exit radius, which was argued earlier as the appropriate size for 
large-scale particles. 

The present findings are useful in understanding some flows of dilute polymer 
solutions, particularly flow through porous media. The very high pressure differentials 
in those media, mentioned in 3 1, are almost certainly due to solute strands, for flexible 
macromolecules produce non-Newtonian effects which are just too small. The network 
concept also explains the ‘degradation ’ observed in the porous media experiments; 
that is, the high pressure losses dropped off in the flow direction (James & McLaren 
1975). It was thought then that degradation is due to molecular scission, but it may be 
that the porous medium breaks up the network and promotes mixing and dissolution 
of the strands. The fluid becomes more and more like a true solution as it proceeds 
through the porous medium, and non-Newtonian behaviour correspondingly tapers 
Off. 

Our results may also be relevant to drag reduction, but it is too early to be other than 
speculative. Certainly the solutions prepared for pipe friction experiments are similar 
to those prepared here, and degradation is noted in those flows too. Furthermore, 
Batchelor’s (1971) theory is a convincing argument that some form of long particles 
are necessary to produce non-Newtonian effects which can compete with inertial 
forces near the wall. These long particles may be solute strands or they may be the 
molecules themselves, for there is a fair body of evidence showing that friction reduc- 
tion occurs with bona fide solutions. Also Hinch (1977) has shown that a polymer 
molecule is stretched out by a strong flow and that it readily remains in extended form. 
Yet there is no direct evidence that molecules are extended in turbulent flow. So while 
long particles are likely necessary for drag reduction, the question remains as to what 
they are and how they are created. 

This work was aided by constructive discussions with Dr E. J. Hinch of the Uni- 
versity of Cambridge. The financial support by the National Research Council of 
Canada is also gratefully acknowledged. 

Appendix. Stress generated by a suspension of large-scale elongated 
particles in sink flow 

A key assumption in Batchelor’s (1971) theory for elongated particles is that the 
particle length is small compared to the dimensions of the flow field. This restriction is 
necessary not only for statistical homogeneity in a small region but also for the assumed 
form of the flow field around the particIe; that is, for small particles the external 
velocity with respect to the particle varies linearly as the distance from the particle 
centre. For longer particles, these premises are no longer valid and the analysis must 
be reworked. The reworking is done in this appendix and, to differentiate size, these 
longer particles are termed large-scale particles, even though the theory will be shown 
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FIGURE 8. Definition sketch. 

to apply to the Batchelor regime as well. Here, as in Batchelor’s work, forces due to 
Brownian motion are ignored and thus the particles readily become aligned in the flow 
direction. In  sink flow, the alignment is along rays, and consequently the particles will 
be straight regardless of their length and flexibility (a feature not possible in other flows 
of large-scale particles). Our particles, then, may be rods or flexible fibres, for the 
dynamics will be the same. 

Following Batchelor’s notation, the particles will be characterized as rods of length 
21 and radius b. The rods are assumed to be the same length and to be distributed 
randomly in the flow field. The approach here is to analyse the force on a single rod 
from this to determine the normal stress due to a small concentration of such rods. 

Dynamics of a single rod 
The force per unit length exerted on an aligned rod by the fluid is 

2=p v,, 
= log ( h / b )  

where V ,  is the local relative velocity and h( 9 b )  is the effective distance between 
particles (Batchelor 197 1). Unlike small-scale particles, the relative velocity at  the 
centre of the rod cannot be assumed to be zero. Some point closer to the apex, where the 
net drag force is zero, will move with the local fluid velocity. Let this centre of motion 
(C.M.) be a distance R from the origin and a distance d from the end, as indicated in 
the sketch above (figure 8). The unperturbed fluid velocity u is A / r 2  where A is 
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proportional to  the flow rate. At a distance x from the C.M., the relative velocity is 
u(R - x) - u(R) or 

A 2Rx-x' 
R2 ( R - x ) ~ '  

p = -  

The tension T, developed a t  the C.M. is 

K A  d2  
R2 R - d '  

where 

Even though the rods are not parallel, h,/b is a fixed ratio because the volume concen- 
tration rjh is a constant and independent of r .  Since h / b  is well approximated by (n/$)& 
(Batchelor 1971), K is equivalent to  4np/(logn/+). 

A similar analysis on the forces upstream of the C.M. yields 

K A  (21-d)2 T = -  
R2 R+21-d '  

Equating the two expressions for T, yields the location of the C.M., viz., 

d = R + 1 - (R2 + 12)&.  

The tension a t  any station x is 

~ ( ~ 1  =-(---) K A  d2 2 2  - (21 -d )  < x < d ,  
R2 R - d  R - X '  

or, as a function of r (which will be more useful later), 

T ( r )  = K A  ( R  2 R - d )  (" -A(L-l)2) ,  r R R - d  < r < R+21-d .  

Computation of normal stress 

In  a sink Aow, a spherical cap of radius r will slice through a number of suspended rods, 
and the tension in each rod will contribute to the extra normal stress arT at  that  radius. 
The tension in a single rod is a random function for it depends where it is sliced. Since 
all positions along the rod are equally likely, the probability of slicing the rod between 
r and r + dr  is dr/21. If the corresponding tension is T(r) ,  then the sum of all probable 
tensions yields the average tension TI for one rod, i.e. 

T - A /  T ( r ) d r .  

If there are n rods intersecting the spherical cap per unit area, then the total tension 
per unit area is nT,, which is just the extra stress vrr. The number n is related to the 
volume concentration + by finding the volume of segments of n rods located in a thin 
layer of fluid adjacent to the spherical cap, viz, rjh = nnb2. Hence 

R-d+21 

I -21 R-a 

R-d t -21  d2 
a,, = - nb221 rjh I C A / R - a  ( R e ( R - d )  - A ( r  R Z- 1)')dr.  
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After some manipulation and substitution for d,  the integral reduces to 
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S f 2  s s' 2 
G(S)  = In---ln--- 

s - 2  2 9-4 s y  

where s = r / l .  It is apparent that the lower limit for s is 2, which restricts 21 to less than 
r and thus ensures that no rod extends beyond the apex. The stress is then 

which is similar to  Batchelor's results for small-scale particles. In  fact, since small 
particles are not excluded by the present theory, the above expression should reduce 
to the small-scale result for 1 -+ 0. This is equivalent to s + 00, and for this limit s3 G(s) 
approaches $, the same coefficient as in Batchelor's work. 

The remaining concern is the magnitude of vrr when 1 is very large, of order r .  The 
appropriate limiting case is s -+ 2 ,  and for this limit s3 G(s) -+ 8(ln 4 - 1 )  E 3. Thus the 
order of magnitude of crrr depends only weakly on the scale of the particles. 
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FIGURE 7. Electron micrographs of the residue from freeze-dried samples of dilutc polymer 
solutions, the magnification being indicated by the scalo in each photograph. (a)  the 20 p.p.m. 
solution of polyethyleno oxide from the sink flow cxperirnents; ( b )  thc same solution at a larger 
magnification, showing the size of the smallest stmnds; (c) a 50 p.p.1”. solution of polyacrylainide 
from Stockhausen. 
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